A GENERALIZED MOMENT PROBLEM

BY
D. LEVIATAN

ABSTRACT

Let {).,.} (n = 0) satisfy (1.1) we are considering the following problems:
What are the necessary and sufficient conditions on a sequence ,u,.}(n 2 0)
in order that it should possess the representation (1.2) where a(¢) is of bounded
variation or the representation (1.3) where f(f) € Ly[0, 1] or £(f) is essentially
bounded.

1. Introduction and definitions. Let the sequence {4} (i = 0) possess the fol-
lowing properties:

(LY 0< dg<Ay<-<ito, T1i=o.
i=1

We shall discuss the following problems: What are the conditions, necessary
and sufficient, on a sequence {u,} (n 20) in order that it should possess the
representation

1
(1.2) o, = f t*da(t) n=0,12,-
(]

where a(f) is of bounded variation in [0,1].
What are the conditions, necessary and sufficient, on a sequence {u,} (n = 0)
in order that it should possess the representation:

1
1.3 e = f t*f(6) dt n=0,12,-
(]

where f(#) belongs to a given class of functions integrable over [0,1].
Hausdorff [3] gave the answer to the first problem in the case 1,=0. End!
[2] solved the same problem in the case A, > 0 and the function «(f) is nonde-
creasing in [0,1].
Schoenberg [9] obtains the same solution as Hausdorff [3] in another way
and we shall use in this paper some of his results.
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Let A be an infinite matrix of real numbers
A= || a,,,,," n=2012:- m=12--

where a;; =1i=0,1,2,---.
Denote

(igosig) = det] @y, || 0Si4; < <ip, r=1,,m (if m=1 (i) = a;, ).

Let us assume that (iy,:--,i,) >0 for every 02 i, <i, < -+ <i,.
For a sequence {y,} (n = 0) define:

Dkus _ f‘s:as,ls""as,k
Hyt ko as+k,l9 ttt as+k,k
(when k=0 D%, =p).

We denote after Schoenberg [9]

(0’m+ 1’."”’) n—m < —
(m+1,“',n)(m,---,n)D Hom 0 sm<n= 1323

(14) A=

and
_ (0) — (19m+1,""n)

= —= = = < = ves
A‘nn (n)#n HUns Lam (0,m+1,---,n) 0=m<n 192,

and £, = 1.

We shall use the function {¢,(x)} (n 2 0) defined by Schoenberg [9] where
it was proved that the functions ¢,(x) are continuous convex functions and
that 0=t <ty < <ty =1.

If A is an infinite Vandermonde, i.e.

A="anm”’ anm=(ln ml n=2012: m=12--
where {1} satisfies Condition (1.1) then it was shown in Schoenberg [9] that

2.1 Pu(x) = xF-~2NE1=4) - for n > 0
and that
A‘nm = (—l)n_m(/lm+l - A’O) teee (j'n - '10) [ﬂm’ ""”n] s
where
@22 [wstl= T H

i

vmm = A = Ao — Ayyg) o (A= 4)
(see also Jakimovski [5] (11.3)).

2. The main results. First we shall generalize Hausdorff’s solutions [3] by solving
the first problem for A, > 0.
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TueoREM 2.1. Let {4} (i =0) satisfy Condition (1.1). The sequence {u,}
(n = Q) possesses the representation (1.2), if, and only if:

(23) sup > lm+1""')‘n|[ﬂm""aﬂn]| = H<w.
820 m=0

Let M(u) be an even, convex continuous function satisfying
1. M(u)/u-0u—0), 2. M(u)/u > (u— o0). Denote by L,[0,1] the class
of functions integrable over [0, 1] such that [§ M[f(x)]dx < co. L,[0,1] is the
Orlicz class related to M(u). (See [6]).

If we take M(u) =|u|? p>1, L,[0,1] is the space I7[0,1].

The Orlicz class L,,[0,1] is not necessarily a linear space (see [6] Theorem 8.2).

Denote by M[0,1] the space of all functions essentially bounded in [0,1].

THEOREM 2.2. Suppose that {¢,(x)} (n = 0) spans the space C[0,1] in the
supremum norm. The sequence {u,} (n = 0) possesses the representation:

1
2.4) n, = f 6 (Of(Ddt  n=n=012-
0
where: (i) f(t)e Ly[0,1] if, and only if,
n 1
2.5) sup X [f ,l,,,,,(t)dt]M e = H<w.
nz0 m=0 (1] 1
[t
0
(i) f()e M[0,1] if, and only if,
2.6) sup ~M——— = H < .
gsm=n

1
nz 0 f Aom(D) dt
0

O,m+1,-.,n)
(m + 1’ ...,n) (m’ ...’n)

(o) = D" (t) for OSm<n = 1,2,

and 4,,(t) = ¢,(¢), by [9] Theorem 8.1 4,.() =0 for 0 £t <1,
0=m=n=012,-.).

TueoReM 2.3. Let {4} (i Z 0) satisfy (1.1) with 4, =0. The sequence {u,}
(n 2 0) possesses the representation (1.3) where: (i) f(t) € L,[0,1] if, and only if,

n 1
sup T [f(‘1)"'"‘1".“-----An[t‘"',---,t‘”]d‘]M LS R R
1]

n20m=0

1
@2.7) f [ et di



100 D. LEVIATAN [April

(i) f(®)eM[0,1] if, and only if,

(2.8) sup Lhms s 1] = H<w.

0<msn

1
nz0 fa [*m, ..., t*] dt
0

By (2.1), and Miintz theorem (see [7] Theorem 2.8.1), Theorem 2.3 in the case
Ay =1 follows from Theorem 2.2.

For 4;=i, i=0,1,2,-.- and M(u) = |u | ?1<p<oo,Theorem 2.3 (i) is
Hausdorff’s Theorem III [4] and for 4, =i, i=0,1,2,-.-, Theorem 2.3 (ii) is
Hausdorff’s Theorem IV [4]. For 4; = i,i =0,1, .- Theorem 2.3 (i) was proved
by Berman [1].

3. Proofs of the Theorems.

Proof of Theorem 2.1. We have to prove the theorem only in the case 4, > 0
since for A, = 0 this is Hausdorff’s Theorem VI [3].
First we prove the necessity.

Define the sequence{f,}, {4,} (n=0) by the equations

(3°l) z0 = 0’ ﬁO = a(l) - oc(O), j‘:n = An—l’ ﬂn =Wy (n g 1)
by (1.2) and (3.1) we have

1
(3.2) i, = f t*da(t) n=0,12-
0

Hence by Hausdorff’s Theorem VI [3]

i
h
A
8

(3.3) sup T Apuseorr-Zy| Do or ]

nz20 m=0

By an easy calculation we get from (2.3) that for 1 <m<n=1,2,--

(3.9) [ﬂm!""ﬁn] = [ﬂm— 15 ""ﬂn—l]'
Therefore by (3.3) we get

sup z.. lm+1 caee ')'nl [p'ma""ﬂn] |

n20 m=0

HLL<w.

Thus we prove (2.2).

In order to prove the sufficiency let us define the sequences {fi,} , {1,} (n 20)
by (3.1), with one exception, [, is arbitrary.

By Hausdorff (7) [3] we get:

z;o(—l)n—m m+1° """ 'In [ﬁm""aﬁ'n] = flp.
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(by 3.4))

n—1
(—1)"11"" '111[1109 "'sﬁn] = ﬁO - Eo(_l) -l_m}'m+1 : '""q'n—l[“m""iﬂn—l] .

Hence by (2.2)
(3.5) j:1""'j:nl[ﬁo"":ﬁu]| = |ﬂ0| + H.
By (2.2), (3.4) and (3.5) we get for every n=0:

Z=01m+1. o 'Ial [ﬁm’ "'9ﬂn] I SK<wo»

where K does not depend on n.
Hence by Hausdorff’s Theorem VI [3]:

1
(3.6) i, = f t*da(t) n=0,1,2,-
0

where off) is of bounded variation in [0,1].
Now by (3.1) and (3.6)

1
Uy = J. t*do(r) n=1012-. Q.E.D.
0

Proof of Theorem 2.2. (i) By corollary 8.1 of Schoenberg the proof is as that of
Berman [1], but now the results of Schoenberg [9] are used. (ii) In order to prove
necessity, let us assume that {u,} (n = 0) possesses the representation (2.4) where
f(H)eM[0,1]. We have

1 1
e fo 070t < H [ 2

where H = esssup | ()] .
0<e<t

Thus we proof necessity.
We prove now sufficiency. By (2.6) and since

3.7 S ) = bo() = 1 (see [9] p. 607 (8.23)),

we get
2 bl sH[ 2 000 i =

Hence by Corollary 8.1 of Schoenberg [9], {u,} (n = 0) possesses the representa-
tion
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1
(338) b= [ 00dx0  n =012,

where off) is of bounded variation in [0,1], and if we define a,(x) by:

0 =0,0x)= X 4, O0<xc=1,

t.mEx

then there exists a subsequence {m;} (i =0) such that lime, (x)=a(x) for
0sx=s1.
Let x,y, 0 x <y <1, there exist r,s satisfying

tn,r é x < tn,r+1 ’ tn,s é y < tn,s+1
(r,s depend on n).

> f : l,,,,,(t)dt]

m=r+1

Now [60)-a,()|S T || SH [

hence for every n = 0: |2a) = ax(x)| <H.
1

s
% Al dt
m=r+1J0

We have lim, o {(¢:(3) — ¢, (%)} = &(y) — a(x). Since {$,(x)} (n=0) spans
C[0,1] we have by [9] Theorem 8.1 and Corollary 8.1 that the solution of the
moment problem is unique. By Helly’s theorem every sequence {n;} (i = 0) has
a subsequence {k;} (j 2 0) such that lim;, o Xy, mex fo 4 m(Dda(?) = a(x) for
each point t = x where a(f) is continuous. Hence lim,, , X, , < [a Aum(f)do(t) = a( x)
for each point ¢t = x where «(?) is continuous and we obtain

s 1
lim X AymDdt = y—x.

i~ m=rt+1J0

< H for any two points x,y, 0Sx<y=1, hence

Therefore M
y—x

a(x) = ¢+ o f()dt where f(f)e M[0,1] and by (3.8):

Ha = f1¢,.(t)f(t)dt n=0,12,.-. QED
0

Proof of Theorem 2.3. The proof of the necessity is similar to that of Theorem
2.2 using, instead of (3.7) formula (11) p. 46 of Lorentz [7]

(=1 ™sg o Ayt =1 for 0t <1
0

imMs

We prove now the sufficiency. As in the proof of Theorem 2.2 we get
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sup 2 )'m+1"" 'An‘[ﬂm"",ﬂn]l =K<w»

n20 m=0

Define functions a,(x) by:

an(0)=0 a,,(X) = 1“'2 ("l)n—mlm+1 e '/l,,[lvlm,"‘,ﬂ,,] 0<x=1
3nm‘§x

and we get by Schoenberg [9] that for every k=0

1 n
J tlkd“n(t) = X tﬁ#“('— ) A I "t Hn] = g
0 m=0

as n— o . Using Helly’s theorem (see [10] p. 29), since o,(x) are of variations
uniformly bounded in [0,1] we get lima, (x) = a(x) for 0<x <1. By Helly-
Bray theorem (see [10] p. 31)

1
= f tda(t)  k =0,1,2,--.
0

We conclude the proof as in Theorem 2.2. Q.E.D.
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